You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

569 lines
12 KiB
C

#include "hw.h"
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/eeprom.h>
#include "hbw.h"
uint8_t in0state;
uint8_t in1state;
uint8_t in2state;
uint8_t in3state;
uint8_t in4state;
uint8_t in5state;
uint8_t scount;
uint8_t anain0;
uint8_t anain1;
uint8_t anain2;
uint8_t anain3;
uint8_t anain4;
uint8_t anain5;
uint16_t anatimer0;
uint16_t anatimer1;
uint16_t anatimer2;
uint16_t anatimer3;
uint16_t anatimer4;
uint16_t anatimer5;
uint16_t logtime;
uint8_t logging0;
uint8_t logging1;
uint8_t logging2;
uint8_t logging3;
uint16_t logtimer0;
uint16_t logtimer1;
uint16_t logtimer2;
uint16_t logtimer3;
uint8_t scount;
uint16_t adcvalue;
void hbw_read_config(void)
{
uint8_t ee;
ee = eeprom_read_byte((const uint8_t *)1);
logtime = 100L * ee;
ee = eeprom_read_byte((const uint8_t *)6);
logging0 = ee & 0x01;
ee = eeprom_read_byte((const uint8_t *)7);
logging1 = ee & 0x01;
ee = eeprom_read_byte((const uint8_t *)8);
logging2 = ee & 0x01;
ee = eeprom_read_byte((const uint8_t *)9);
logging3 = ee & 0x01;
ee = eeprom_read_byte((const uint8_t *)10);
anain0 = ee & 0x01;
anain1 = ee & 0x02;
anain2 = ee & 0x04;
anain3 = ee & 0x08;
anain4 = ee & 0x10;
anain5 = ee & 0x20;
}
uint8_t hbw_get_channel(uint8_t channel, uint8_t data[])
{
if (channel == 0) {
if (bit_is_clear(PINB, RedLED))
data[0] = 0;
else
data[0] = 200;
return 1;
}
if (channel == 1) {
if (bit_is_clear(PINB, GreenLED))
data[0] = 0;
else
data[0] = 200;
return 1;
}
if (channel == 2) {
if (bit_is_clear(PIND, Out0))
data[0] = 0;
else
data[0] = 200;
return 1;
}
if (channel == 3) {
if (bit_is_clear(PIND, Out1))
data[0] = 0;
else
data[0] = 200;
return 1;
}
if (channel == 4) {
if (anain0) {
ADMUX = (ADMUX & ~(0x1F)) | 0;
ADCSRA |= (1<<ADSC);
loop_until_bit_is_clear(ADCSRA, ADSC);
adcvalue = ADCW;
data[0] = adcvalue >> 8;
data[1] = adcvalue & 0xFF;
return 2;
}
if (bit_is_clear(PINC, In0))
data[0] = 200;
else
data[0] = 0;
return 1;
}
if (channel == 5) {
if (anain1) {
ADMUX = (ADMUX & ~(0x1F)) | 1;
ADCSRA |= (1<<ADSC);
loop_until_bit_is_clear(ADCSRA, ADSC);
adcvalue = ADCW;
data[0] = adcvalue >> 8;
data[1] = adcvalue & 0xFF;
return 2;
}
if (bit_is_clear(PINC, In1))
data[0] = 200;
else
data[0] = 0;
return 1;
}
if (channel == 6) {
if (anain2) {
ADMUX = (ADMUX & ~(0x1F)) | 2;
ADCSRA |= (1<<ADSC);
loop_until_bit_is_clear(ADCSRA, ADSC);
adcvalue = ADCW;
data[0] = adcvalue >> 8;
data[1] = adcvalue & 0xFF;
return 2;
}
if (bit_is_clear(PINC, In2))
data[0] = 200;
else
data[0] = 0;
return 1;
}
if (channel == 7) {
if (anain3) {
ADMUX = (ADMUX & ~(0x1F)) | 3;
ADCSRA |= (1<<ADSC);
loop_until_bit_is_clear(ADCSRA, ADSC);
adcvalue = ADCW;
data[0] = adcvalue >> 8;
data[1] = adcvalue & 0xFF;
return 2;
}
if (bit_is_clear(PINC, In3))
data[0] = 200;
else
data[0] = 0;
return 1;
}
if (channel == 8) {
if (anain4) {
ADMUX = (ADMUX & ~(0x1F)) | 4;
ADCSRA |= (1<<ADSC);
loop_until_bit_is_clear(ADCSRA, ADSC);
adcvalue = ADCW;
data[0] = adcvalue >> 8;
data[1] = adcvalue & 0xFF;
return 2;
}
if (bit_is_clear(PINC, In4))
data[0] = 200;
else
data[0] = 0;
return 1;
}
if (channel == 9) {
if (anain5) {
ADMUX = (ADMUX & ~(0x1F)) | 5;
ADCSRA |= (1<<ADSC);
loop_until_bit_is_clear(ADCSRA, ADSC);
adcvalue = ADCW;
data[0] = adcvalue >> 8;
data[1] = adcvalue & 0xFF;
return 2;
}
if (bit_is_clear(PINC, In5))
data[0] = 200;
else
data[0] = 0;
return 1;
}
return 0;
}
void hbw_set_channel(uint8_t channel, uint8_t len, uint8_t data[])
{
if (channel == 0) {
if (data[0])
PORTB |= (1<<RedLED);
else
PORTB &= ~(1<<RedLED);
}
if (channel == 1) {
if (data[0])
PORTB |= (1<<GreenLED);
else
PORTB &= ~(1<<GreenLED);
}
if (channel == 2) {
if (data[0])
PORTD |= (1<<Out0);
else
PORTD &= ~(1<<Out0);
}
if (channel == 3) {
if (data[0])
PORTD |= (1<<Out1);
else
PORTD &= ~(1<<Out1);
}
}
void hbw_receive_key(uint32_t saddress, uint8_t schannel, uint8_t channel, uint8_t countflag)
{
uint8_t i, type;
if (channel > 3)
return;
if (scount == countflag)
return;
for (i=0; i < 16; i++) {
if ((eeprom_read_byte((const uint8_t *)(i*7)+0x38) == ((uint8_t*)&saddress)[0]) &&
(eeprom_read_byte((const uint8_t *)(i*7)+0x39) == ((uint8_t*)&saddress)[1]) &&
(eeprom_read_byte((const uint8_t *)(i*7)+0x3a) == ((uint8_t*)&saddress)[2]) &&
(eeprom_read_byte((const uint8_t *)(i*7)+0x3b) == ((uint8_t*)&saddress)[3]) &&
(eeprom_read_byte((const uint8_t *)(i*7)+0x3c) == schannel) &&
(eeprom_read_byte((const uint8_t *)(i*7)+0x3d) == channel)) {
type = eeprom_read_byte((const uint8_t *)(i*7)+0x3e);
switch (countflag & 3) {
case 1:
type = (type >> 6) & 0x3;
break;
case 0:
type = (type >> 4) & 0x3;
break;
case 3:
type = (type >> 2) & 0x3;
break;
case 2:
type = type & 0x3;
}
switch (type) {
case 0:
if(channel == 0)
PORTB |= (1<<RedLED);
else if(channel == 1)
PORTB |= (1<<GreenLED);
else if(channel == 2)
PORTD |= (1<<Out0);
else
PORTD |= (1<<Out1);
break;
case 1:
if(channel == 0)
PORTB &= ~(1<<RedLED);
else if(channel == 1)
PORTB &= ~(1<<GreenLED);
else if(channel == 2)
PORTD &= ~(1<<Out0);
else
PORTD &= ~(1<<Out1);
break;
case 3:
if(channel == 0)
PORTB ^= (1<<RedLED);
else if(channel == 1)
PORTB ^= (1<<GreenLED);
else if(channel == 2)
PORTD ^= (1<<Out0);
else
PORTD ^= (1<<Out1);
}
if ((channel == 0) && logging0) {
logtimer0 = hbw_timer + logtime;
if (!logtimer0) logtimer0 = 1;
}
if ((channel == 1) && logging1) {
logtimer1 = hbw_timer + logtime;
if (!logtimer1) logtimer1 = 1;
}
if ((channel == 2) && logging2) {
logtimer2 = hbw_timer + logtime;
if (!logtimer2) logtimer2 = 1;
}
if ((channel == 3) && logging3) {
logtimer3 = hbw_timer + logtime;
if (!logtimer3) logtimer3 = 1;
}
return;
}
}
}
int main(void)
{
uint8_t state[2];
DDRB |= (1<<RedLED);
DDRB |= (1<<GreenLED);
DDRD |= (1<<Out0);
DDRD |= (1<<Out1);
DDRC &= ~(1<<In0);
DDRC &= ~(1<<In1);
DDRC &= ~(1<<In2);
DDRC &= ~(1<<In3);
DDRC &= ~(1<<In4);
DDRC &= ~(1<<In5);
PORTB &= ~(1<<RedLED);
PORTB &= ~(1<<GreenLED);
PORTD &= ~(1<<Out0);
PORTD &= ~(1<<Out1);
PORTC |= (1<<In0);
PORTC |= (1<<In1);
PORTC |= (1<<In2);
PORTC |= (1<<In3);
PORTC |= (1<<In4);
PORTC |= (1<<In5);
ADMUX = (0<<REFS1) | (1<<REFS0);
ADCSRA = (1<<ADPS2) | (1<<ADPS1);
ADCSRA |= (1<<ADEN);
ADCSRA |= (1<<ADSC);
loop_until_bit_is_clear(ADCSRA, ADSC);
adcvalue = ADCW;
hbw_init();
while(1) {
hbw_loop();
if (anain0) {
if (!anatimer0 || (hbw_timer - anatimer0 < 100)) {
ADMUX = (ADMUX & ~(0x1F)) | 0;
ADCSRA |= (1<<ADSC);
loop_until_bit_is_clear(ADCSRA, ADSC);
adcvalue = ADCW;
state[0] = adcvalue >> 8;
state[1] = adcvalue& 0xFF;
if (hbw_send_channel(4, 2, state)) {
anatimer0 = hbw_timer + logtime;
if (!anatimer0) anatimer0 = 1;
}
}
} else {
if (bit_is_clear(PINC, In0) && (!in0state)) {
state[0] = 200;
if (hbw_send_channel(4, 1, state))
in0state = ~0;
}
if (bit_is_set(PINC, In0) && in0state) {
state[0] = 0;
if (hbw_send_channel(4, 1, state))
in0state = 0;
}
}
if (anain1) {
if (!anatimer1 || (hbw_timer - anatimer1 < 100)) {
ADMUX = (ADMUX & ~(0x1F)) | 1;
ADCSRA |= (1<<ADSC);
loop_until_bit_is_clear(ADCSRA, ADSC);
adcvalue = ADCW;
state[0] = adcvalue >> 8;
state[1] = adcvalue& 0xFF;
if (hbw_send_channel(5, 2, state)) {
anatimer1 = hbw_timer + logtime;
if (!anatimer1) anatimer1 = 1;
}
}
} else {
if (bit_is_clear(PINC, In1) && (!in1state)) {
state[0] = 200;
if (hbw_send_channel(5, 1, state))
in1state = ~0;
}
if (bit_is_set(PINC, In1) && in1state) {
state[0] = 0;
if (hbw_send_channel(5, 1, state))
in1state = 0;
}
}
if (anain2) {
if (!anatimer2 || (hbw_timer - anatimer2 < 100)) {
ADMUX = (ADMUX & ~(0x1F)) | 2;
ADCSRA |= (1<<ADSC);
loop_until_bit_is_clear(ADCSRA, ADSC);
adcvalue = ADCW;
state[0] = adcvalue >> 8;
state[1] = adcvalue& 0xFF;
if (hbw_send_channel(6, 2, state)) {
anatimer2 = hbw_timer + logtime;
if (!anatimer2) anatimer2 = 1;
}
}
} else {
if (bit_is_clear(PINC, In2) && (!in2state)) {
state[0] = 200;
if (hbw_send_channel(6, 1, state))
in2state = ~0;
}
if (bit_is_set(PINC, In2) && in2state) {
state[0] = 0;
if (hbw_send_channel(6, 1, state))
in2state = 0;
}
}
if (anain3) {
if (!anatimer3 || (hbw_timer - anatimer3 < 100)) {
ADMUX = (ADMUX & ~(0x1F)) | 3;
ADCSRA |= (1<<ADSC);
loop_until_bit_is_clear(ADCSRA, ADSC);
adcvalue = ADCW;
state[0] = adcvalue >> 8;
state[1] = adcvalue& 0xFF;
if (hbw_send_channel(7, 2, state)) {
anatimer3 = hbw_timer + logtime;
if (!anatimer3) anatimer3 = 1;
}
}
} else {
if (bit_is_clear(PINC, In3) && (!in3state)) {
state[0] = 200;
if (hbw_send_channel(7, 1, state))
in3state = ~0;
}
if (bit_is_set(PINC, In3) && in3state) {
state[0] = 0;
if (hbw_send_channel(7, 1, state))
in3state = 0;
}
}
if (anain4) {
if (!anatimer4 || (hbw_timer - anatimer4 < 100)) {
ADMUX = (ADMUX & ~(0x1F)) | 4;
ADCSRA |= (1<<ADSC);
loop_until_bit_is_clear(ADCSRA, ADSC);
adcvalue = ADCW;
state[0] = adcvalue >> 8;
state[1] = adcvalue& 0xFF;
if (hbw_send_channel(8, 2, state)) {
anatimer4 = hbw_timer + logtime;
if (!anatimer4) anatimer4 = 1;
}
}
} else {
if (bit_is_clear(PINC, In4) && (!in4state)) {
state[0] = 200;
if (hbw_send_channel(8, 1, state))
in4state = ~0;
}
if (bit_is_set(PINC, In4) && in4state) {
state[0] = 0;
if (hbw_send_channel(8, 1, state))
in4state = 0;
}
}
if (anain5) {
if (!anatimer5 || (hbw_timer - anatimer5 < 100)) {
ADMUX = (ADMUX & ~(0x1F)) | 5;
ADCSRA |= (1<<ADSC);
loop_until_bit_is_clear(ADCSRA, ADSC);
adcvalue = ADCW;
state[0] = adcvalue >> 8;
state[1] = adcvalue& 0xFF;
if (hbw_send_channel(9, 2, state)) {
anatimer5 = hbw_timer + logtime;
if (!anatimer5) anatimer5 = 1;
}
}
} else {
if (bit_is_clear(PINC, In5) && (!in5state)) {
state[0] = 200;
if (hbw_send_channel(9, 1, state))
in5state = ~0;
}
if (bit_is_set(PINC, In5) && in5state) {
state[0] = 0;
if (hbw_send_channel(9, 1, state))
in5state = 0;
}
}
if (logtimer0 && (hbw_timer - logtimer0 < 100)) {
state[0] = 0;
if (bit_is_set(PINB, RedLED))
state[0] = 200;
if (!hbw_send_channel(0, 1, state))
logtimer0 += 300;
else
logtimer0 = 0;
}
if (logtimer1 && (hbw_timer - logtimer1 < 100)) {
state[0] = 0;
if (bit_is_set(PINB, GreenLED))
state[0] = 200;
if (!hbw_send_channel(1, 1, state))
logtimer1 += 300;
else
logtimer1 = 0;
}
if (logtimer2 && (hbw_timer - logtimer2 < 100)) {
state[0] = 0;
if (bit_is_set(PIND, Out0))
state[0] = 200;
if (!hbw_send_channel(2, 1, state))
logtimer2 += 300;
else
logtimer2 = 0;
}
if (logtimer3 && (hbw_timer - logtimer3 < 100)) {
state[0] = 0;
if (bit_is_set(PIND, Out1))
state[0] = 200;
if (!hbw_send_channel(3, 1, state))
logtimer3 += 300;
else
logtimer3 = 0;
}
}
}